viernes, 18 de octubre de 2013

EL SISTEMA DE TRANSMISIÓN

El sistema de transmision es el conjunto de elementos que tiene la misión de hacer llegar el giro del motor hasta las ruedas motrices.
Con este sistema también se consigue variar la relación de transmisión entre el cigüeñal y las ruedas. Esta relación se varía en función de las circunstancias del momento (carga transportada y el trazado de la calzada). Según como intervenga la relación de transmisión, el eje de salida de la caja de velocidades (eje secundario), puede girar a las mismas revoluciones, a más o a menos que el cigüeñal.
El cigüeñal es una de las partes básicas del motor de un coche. A través de él se puede convertir el movimiento lineal de los émbolos en uno rotativo, lo que supone algo muy importante para desarrollar la tracción final a base de ruedas, además de recibir 
todos los impulsos irregulares que proporcionan los pistones, para después convertirlos en un giro uqe ya es regular y equilibrado, unificando toda la energía macanica uqe se acumulan en cada una de las combustiones.
Si el árbol de transmisión gira más despacio que el cigüeñal, diremos que se ha producido una desmultiplicación o reducción y en caso contrario una multiplicación o súper-marcha.

TIPOS DE TRANSMISIÓN

-Motor delantero y tracción
Sus ruedas delanteras son motrices y directrices y no posee árbol de transmisión. Este sistema es muy empleado en turismos de pequeña y mediana potencia.
-Motor delantero y propulsión
Las ruedas motrices son las traseras, y dispone de árbol de transmisión. Su disposición es algo más compleja, utilizándose en camiones y turismos de grandes potencias.

- Motor trasero y propulsión
Sus ruedas motrices son las traseras y tampoco posee árbol de transmisión. Este sistema apenas se emplea en la actualidad por problemas de refrigeración del motor

-Propulsión doble
Utilizado en camiones de gran tonelaje, donde la mayor parte del peso está soportado 
por las ruedas traseras y mejor repartido.Este sistema consiste en colocar dos puentes traseros y motrices evitando así colocar un solo grupo cónico de grandes dimensiones. De esta manera el esfuerzo a transmitir por cada grupo cónico se reduce a la mitad, reduciéndose las dimensiones sobre todo las del par-cónico.

-Transmisión total
Los dos ejes del vehículo son motrices. Los dos puentes o ejes motrices llevan un diferencial cada uno. Con esta transmisión pueden, a voluntad del conductor, enviar el movimiento a los dos puentes o solamente al trasero. Este sistema se monta frecuentemente en vehículos todo terreno y en camiones de grandes tonelajes sobre todo 
los que se dedican a la construcción y obras públicas.


ELEMENTOS DEL SISTEMA DE TRANSMISION

Para describir los elementos de transmisión, consideramos un vehículo con motor delantero y propulsión ya que en este el montaje emplea todos los elementos del sistema de transmisión:

-Embrague: Tiene la misión de acoplar y desacoplar, a voluntad del conductor, el giro del motor de la caja de cambios. Debe transmitir el movimiento de una forma suave y progresiva, sin que se produzcan tirones que puedan producir roturas en algunos elementos del sistema de transmisión.Se encuentra situado entre el volante de inercia (volante motor) y la caja de velocidades. Dentro de la gran variedad de embragues existentes, caben destacar los siguientes:

-Embragues de fricción.
-Embragues hidráulicos.
-Embragues electromagnéticos.
-Embrague de fricción monodisco de muelles
-Embrague de disco

-
Caja de velocidades: es la encargada de aumentar, mantener o disminuir la relación de transmisión entre el cigüeñal y las ruedas, en función de las necesidades, con la finalidad de aprovechar al máximo la potencia del motor.

 Función de la caja de velocidades:
La misión de la caja de cambios es convertir el par motor. Es, pues, un convertidor o transformador de par.Un vehículo avanza cuando vence una serie de fuerzas que se oponen a su movimiento, y que constituyen el par resistente.El par motor y el resistente son opuestos.La función de la caja de cambios consiste en variar el par motor entre el motor y las ruedas, según la importancia del par resistente, con la particularidad de poder intervenir en todo momento y conseguir el desplazamiento del vehículo en las mejores condiciones.

 Tipos de caja de cambio de velocidades

-
Cajas de cambios manuales
Son las utilizadas en la mayoría de los automóviles de serie, por su sencillez y economía. Es accionado manualmente mediante una palanca de cambio. Podemos considerar tres partes fundamentales en su constitución:
-Caja o cárter: donde van montadas las combinaciones de ejes y engranajes. Lleva aceite altamente viscoso.
-Tren de engranajes: conjunto de ejes y piñones para la transmisión del movimiento.
-Mando del cambio: mecanismo que sirve para seleccionar la marcha adecuada.Estudiamos tres tipos de cajas de cambio manuales:

-Caja manual de toma variable desplazable: Actualmente las cajas de velocidades de toma variable apenas se usan, pues han sido desplazadas por las de toma constante, que presentan los engranajes tallados con dientes helicoidales, permitiendo que los piñones del eje primario o intermediario y secundario estén siempre en contacto.Las de toma variable, al ser los dientes rectos, tienen más desgaste y producen más ruido.La palanca tiene tantas posiciones como velocidades, más la de punto muerto.
-Caja de cambios manual de toma constante normal silenciosa: Es éste un montaje que nos permite la utilización de piñones helicoidales.Los piñones helicoidales se caracterizan por la imposibilidad de ser engranados estando en movimiento. Es preciso, por tanto, que estén en toma constante.Al existir distintas relaciones de engranajes es necesario que los piñones del árbol secundario giren libres sobre dicho árbol.Al ser una necesidad el girar libres los piñones en el árbol secundario , para realizar la transmisión es preciso fijar el piñón correspondiente con el árbol secundario.
-Caja de cambios manuales de toma constante simplificada sincronizadas: Muy empleada en la actualidad, ya que hay gran cantidad de vehículos de tracción delantera. Las tracciones delanteras se emplean por su sencillez mecánica y su economía de elementos (no tienen árbol de transmisión).El secundario de la caja de cambios va directamente al grupo cónico diferencial y, además, carece de eje intermediario por la que el movimiento se transmite del primario al secundario mediante sincronizadores . En el eje secundario va montado el piñón de ataque del grupo cónico . Se suelen fabricar con una marcha multiplicadora de las revoluciones del motor (superdirecta), que resulta muy económica.


-Caja de velocidades de cambio automático
Con el fin de hacer más cómodo y sencillo el manejo del automóvil, despreocupando al conductor del manejo de la palanca de cambios y del embrague y para no tener que elegir la marcha adecuada a cada situación, se idearon los cambios de velocidades automáticos, mediante los cuales las velocidades se van cambiando sin la intervención del conductor. Estos cambios se efectúan en función de la velocidad del motor, de la velocidad del vehículo y de la posición del acelerador.El cambio está precedido de un embrague hidráulico o convertidor de par.Aunque carece de pedal de embrague, sí tiene palanca de cambios, o más bien palanca selectora de velocidad, que puede situarse en distintas posiciones .

-
Árbol de transmisión: transmite el movimiento de la caja de velocidades al conjunto par cónico-diferencial. Está constituido por una pieza alargada y cilíndrica, que va unida por uno de los extremos al secundario de la caja de cambios, y por el otro al piñón del grupo cónico.

-
Mecanismo par-cónico diferencial: mantiene constante la suma de las velocidades que llevan las ruedas motrices antes de tomar la curva. Desmultiplica constantemente las vueltas del árbol de transmisión en las ruedas motrices y convierte el giro longitudinal de éste, en giro transversal en las ruedas.

-Función:
El puente trasero, con su grupo de piñón y corona (par cónico) , constituye la transmisión final y su misión es conseguir que la transmisión del movimiento que viene desde el motor, pasando por el embrague, caja de cambios y árbol de transmisión , cambie en ángulo recto para transmitir la fuerza motriz a las ruedas. Es decir, que transforma la fuerza motriz que llega del árbol de transmisión en sentido longitudinal, en transversal en los palieres. Existen varias formas de engranaje que permiten transmitir el esfuerzo de un eje a otro en ángulo recto y sin pérdida apreciable de potencia.





-Tipos de engranajes utilizados en el grupo piñón-corona.


El tipo hipoide es más adecuado para turismos y camiones ligeros, ya que permite colocar el piñón de ataque por debajo del centro de la corona y bajar así el árbol de transmisión para conseguir bajar el piso de la carrocería, teniendo en cuenta además que su funcionamiento es silencioso.

-Puente trasero de doble reducción.


En camiones pesados se emplean grandes reducciones y éstas se realizan en dos etapas:


-En la entrada al puente.
-Colocando un mecanismo reductor en los palieres, en el cubo de las ruedas, después del diferencial.


Si el reductor se puede anular, cada relación del cambio puede ser normal o reducida. De esta forma se duplica el número de velocidades disponible en el camión.


-Diferencial

-Función:
Si los ejes de las ruedas traseras (propulsión trasera), estuvieran unidos directamente a la corona (del grupo piñón-corona), necesariamente tendrían que dar ambas el mismo número de vueltas. Al tomar una curva la rueda exterior describe un arco mayor que la interior; es decir, han de recorrer distancias diferentes pero, como las vueltas que dan son las mismas y en el mismo tiempo, forzosamente una de ellas arrastrará a la otra, que patinará sobre el pavimento. Para evitarlo se recurre al diferencial, mecanismo que hace dar mayor número de vueltas a la rueda que va por la parte exterior de la curva, que las del interior , ajustándolas automáticamente y manteniendo constante la suma de las vueltas que dan ambas ruedas con relación a las vueltas que llevaban antes de entrar en la curva.Al desplazarse el vehículo en línea recta, ambas ruedas motrices recorren la misma distancia a la misma velocidad y en el mismo tiempo.
-Juntas de transmisión: las juntas se utilizan para unir elementos de transmisión y permitir variaciones de longitud y posiciones

Semiárboles de transmisión (palieres): son los encargados de transmitir el movimiento del grupo cónico-diferencial hasta las ruedas motrices, cuando el sistema carece de árbol de transmisión.

martes, 15 de octubre de 2013

REFRIGERACIÓN EN MOTORES DE COMBUSTIÓN INTERNA
La refrigeración en motores de combustión interna es necesaria para eliminar el calor generado por la quema del combustible (superior a 2000ºC), y no transformado en energía mecánica, durante el funcionamiento de éstos. La principal función de la refrigeración es mantener todos los componentes dentro del rango de temperaturas de diseño del motor evitando su destrucción por deformación y agarrotamiento.
ÍNDICE
·         1 Razones para refrigerar el motor
·         2 Sistemas de refrigeración
o    2.1 Por agua
§  2.1.1 Circulación por termosifón
§  2.1.2 Circulación forzada
o    2.2 Ventajas e inconvenientes de la refrigeración por agua
§  2.3.2 Bomba centrífuga
§  2.3.3 Ventilador
·         3 Refrigeración por aire
·         4 Refrigeración por aceite
·         5 Referencias
RAZONES PARA REFRIGERAR EL MOTOR
Durante la combustión, parte de la energía generada no es convertida en energía mecánica y se disipa en forma de calor. Según el diseño del motor alrededor del 33% de la energía potencial del combustible se transforma en trabajo mecánico, y el resto se transforma en calor que es necesario disipar para evitar comprometer la integridad mecánica del motor.
El sistema no solo debe limitar la temperatura máxima del motor para evitar daños al mismo, sino también mantener la temperatura óptima de funcionamiento que, dependiendo del diseño del motor, se encuentra en el rango de 80 a 100°Cd. De su buen funcionamiento depende en buena medida el rendimiento térmico del motor.
Si el motor trabaja por encima de su temperatura óptima, se corre el riesgo de disminuir la viscosidad del aceite y aumentar el desgaste del motor, se produce un recalentamiento de las piezas y una mayor fricción entre estas. También puede producirse detonaciones al encenderse la mezcla combustible antes de tiempo.
Si el motor trabaja por debajo de su temperatura óptima, se aumenta el consumo de aceite y el desgaste de las piezas, ya que éstas están diseñadas para dilatarse por efecto del calor a un tamaño determinado, se reduce la potencia por falta de temperatura para una combustión eficiente, se producen incrustaciones de carbón en válvulas, bujías y pistones.
SISTEMAS DE REFRIGERACIÓN
Existen diferentes denominaciones que hacen referencia al sistema principal aunque en realidad en todo motor participan, en diferente medida, varios sistemas simultáneamente. Estos serían los principales:
Por agua (por 
termosifón o por circulación forzada), por aire (el de la marcha o forzado con ventilador), mixta y por aceite.
POR AGUA
En realidad lo que llamamos refrigeración por agua son los sistemas que usan un líquido diferente del aceite como refrigerante principal. Lo más usual es una mezcla de etilenglicol y agua en diferentes proporciones según la temperatura ambiente.
CIRCULACIÓN POR TERMOSIFÓN
Su funcionamiento está basado en la diferencia de densidad existente, entre el refrigerante caliente que está en el bloque y la culata, y el agua fría que se encuentra en el radiador. Para esto se requiere poca resistencia a la circulación del refrigerante. El depósito superior debe ser de gran capacidad para evitar que el nivel del líquido en caso de evaporación no descienda por debajo del nivel del orificio de llegada al radiador. Este sistema ya no se utiliza debido a las restricciones de capacidad térmica, posicionamiento y volumen.
CIRCULACIÓN FORZADA ·
Es el más empleado. La circulación del refrigerante, es impulsada a través de una bomba centrífuga, pasa por los cilindros del bloque motor, luego por la culata, y finalmente por el radiador, donde tiene lugar el enfriamiento. Al circular el refrigerante por el panel del radiador, intercambia el calor con el aire de la marcha, o forzado por un ventilador. El líquido refrigerado regresa al motor donde comienza nuevamente el ciclo. La bomba es accionada generalmente mediante correas y poleas, que, en algunos casos, también hacen girar el ventilador. En los sistemas más modernos, el ventilador es movido por un motor eléctrico comandado por un termocontacto, y entra en funcionamiento sólo cuando la temperatura del líquido lo requiere. El sistema consta de un deposito que sirve para almacenar el refrigerante y como eventual vaso de expansión. También es habitual encontrar un circuito paralelo utilizado para la calefacción del vehículo.
VENTAJAS E INCONVENIENTES DE LA REFRIGERACIÓN POR AGUA
Las ventajas de la refrigeración por agua son: Excelente regulación de la temperatura, refrigeración homogénea, motor más silencioso, menor consumo de energía.
Las desventajas son: Mayor peso del motor y aumento en su complejidad. Mayor mantenimiento y mayor coste. En caso de perdida de líquido refrigerante se puede destruir el motor si no se detiene a tiempo.
ELEMENTOS CONSTITUTIVOS DEL SISTEMA DE REFRIGERACIÓN POR AGUA
RADIADOR
Situado generalmente en la parte delantera del vehículo, de forma que reciba directamente el paso de aire a través de sus paneles y aletas refrigerantes durante el desplazamiento del mismo y donde se enfría el agua procedente del motor.
Este elemento esta formado por dos depósitos, uno superior y otro inferior, unidos entre si por una serie de tubos finos rodeados por numerosas aletas de refrigeración, o por una serie de paletas en forma de nidos de abeja que aumentan la superficie radiante de calor. Tanto los tubos y aletas como los paneles se fabrican en aleación ligera generalmente de latón, facilitando, con su mayor conductibilidad térmica, la rápida evacuación de calor a la atmósfera.
El deposito superior lleva una boca de entrada lateral que se comunica por medio de un manguito de goma con la salida de agua calienta de la culata o tapa de cilindros. En el depósito inferior va instalada la boca de salida del agua refrigerada, unida por otro manguito de goma a la entrada de la bomba.
Diseños más utilizados
·         Nido de abejas: El agua circula por la parte externa, y el aire por el interior de los orificios. Alto costo de fabricación.
·         De laminillas: Muy poco utilizado debido a su fragilidad
·         De tubos y aletas: El agua circula por el interior de los tubos, estos se encuentran soldados en su periferia con láminas, siendo ambos barridos por la corriente de aire. Es el más utilizado actualmente.
La tapa del radiador o tapa presostática tiene como función el cierre del tanque superior, y al mismo tiempo limita la presión de trabajo del circuito mediante una válvula, con lo cual se logran circuitos presurizados, aumentando la temperatura de régimen sin que se produzca la ebullición del agua.
BOMBA CENTRÍFUGA
Se halla instalada en el bloque del motor y es movida directamente por la polea del cigüeñal, a través de una transmisión por correa trapezoidal. Dicha bomba aspira el agua del radiador y la hace circular por el interior del bloque y la culata para refrigerar los cilindros y la cámara de combustión.
La bomba está formadas por una carcasa de aleación ligera o de fundición (en los motores más antiguos), unida al bloque del motor con interposición de una junta de cartón amianto para hacer estanca la unión. En el interior de la misma se mueve una turbina de aletas unida al árbol de mando de la bomba, el cual se apoya sobre la carcasa por medio de uno o dos cojinetes de bolas, con un reten acoplado al árbol para evitar fugas de agua a través del mismo. En el otro extremo del árbol va montado un cubo al cual se une la polea de mando, y el ventilador.
Ventilador

.
Adosado generalmente a la polea de la bomba, que activa el paso de aire a través del radiador. El rotor tiene cuatro o seis aspas inclinadas convenientemente para la aspiración del aire y esta fabricado en chapa o plástico duro. En muchos diseños el ventilador es movido por un motor eléctrico. Éste motor es comandando por un termostato que se encuentra en el bloque de cilindro o en la culata en contacto con el agua, de tal manera que al alcanzar ésta un temperatura determinada, cierra el circuito eléctrico poniendo en marcha el motor y el ventilador.
La válvula termostática cumple la función de limitar el pasaje del agua desde el motor hacia el radiador, en función de la temperatura del mismo. Lo que significa que si la temperatura del motor no supera la temperatura de régimen permanece cerrada, recirculando el agua solamente por el motor, de superar la temperatura de régimen la válvula abre y permite la circulación del agua a través del radiador. Su construcción esta basada en elementos deformables en función de la temperatura de régimen.

Se pueden utilizar termostatos de fuelle o termostatos de cera, los cuales ambos funcionan por el principio de dilatación o contracción a diversas temperaturas, para la apertura o cierre de la válvula. Actualmente se utilizan válvulas con cápsula de resina.
El líquido refrigerante se utiliza para evitar incrustaciones debido a bicarbonatos y silicatos, el líquido deberá ser agua pura. A su vez, se agregan inhibidores para evitar el efecto oxidante y a efectos de disminuir el punto de congelamiento, para este último punto se agrega alcohol o glicerina, llegando a temperaturas de –9 C a –23 C.
Refrigeración por aire
En la refrigeración por aire el enfriamiento se obtiene mediante el barrido de los cilindros por la corriente de aire efectuada por el desplazamiento de la máquina (motos y aviones), o forzada mecánicamente. Este sistema es muy utilizado en motores de motocicletas, aviación de baja y alta potencia y turismos de escasa potencia, debido a su menor peso, mayor fiabilidad y/o bajo coste.
Las ventajas de este sistema son: casi nulo mantenimiento, seguridad al no tener casi partes móviles ni agua, rápido alcance del equilibrio térmico, menor peso, y menor costo.
Las desventajas son: motor ruidoso, regulación delicada, tendencia al recalentamiento a bajas velocidades.
REFRIGERACIÓN POR ACEITE
En algunos motores (ej. Suzuki GSX 750) se ha empleado con éxito el propio aceite del motor como elemento refrigerante principal. En estos sistemas se aumenta la cantidad de aceite del carter motor que se hace circular a través de un radiador de dimensión adecuada antes de pasar a lubricar y refrigerar el motor.


domingo, 13 de octubre de 2013

ACEITE PARA MOTOR
El aceite de motor es un lubricante que se usa en motores de combustión interna. Entre ellos se incluyen automóviles, motocicletas, autobuses, vehículos comerciales, botes,corta céspedes , tractores, trenes, aviones, diversos equipamientos para la construcción y la agricultura y motores estáticos como generadores eléctricos. En los motores hay componentes que se mueven a distancias muy reducidas causando fricción, provocando así la pérdida de energía motriz en calor disipado. El contacto entre superficies en movimiento también desgasta los componentes, desembocando en una reducción de la eficiencia y en una degradación del motor. Esto, a su vez, supone un aumento del consumo de combustible y reduce la potencia del motor y puede, en casos extremos, causar una avería irreversible del motor (ej. gripaje).
El aceite lubricante crea una película separadora entre las superficies móviles adyacentes para minimizar el contacto directo, el desgaste y la producción de calor, protegiendo así al motor. Gracias a la buena conductividad de calor del aceite, al ponerse en contacto con una superficie caliente, absorbiendo parte del calor para transmitirlo a otro sitio, normalmente al aire o a un disipador de algún tipo.
En los motores de gasolina el anillo de compresión superior puede llegar a exponer el aceite de motor a temperaturas de hasta 160 °C. En los motores diésel el anillo superior puede exponer el aceite a temperaturas superiores a los 315 °C. Los aceites de motor con índices de viscosidad superiores se debilitan menos a altas temperaturas.
Recubriendo componentes metálicos con aceite evita su exposición al oxígeno, evitando así su oxidación a altas temperaturas, salvaguardando al motor de la corrosión. También pueden añadirse al aceite inhibidores de corrosión. Muchos aceites de motor también tienen aditivos detergentes y dispersadorespara mantener el motor limpio y minimizar la formación de compuesto sólido grasiento.
El roce de componentes metálicos produce, inevitablemente, partículas metálicas microscópicas. Estas partículas podrían desplazarse en el aceite causando una mayor erosión y desgaste de las piezas móviles. Precisamente para filtrar esas partículas existen los filtros de aceite. Una bomba de aceite, una salida o un bomba de dientes alimentado por el motor del vehículo se encargan de bombear el aceite a través del filtro. Existen dos tipos de filtros, de flujo completo, o de bifurcación.
En el caso de la carcasa del cigüeñal del motor de un vehículo, el aceite del motor lubrica las superficies móviles o rotatorias entre los rodamientos del cigüeñal y las bielas que unen los pistonesal cigüeñal. El aceite se recolecta en el fondo del carcasa. En algunos motores de reducido tamaño, como por ejemplo el de un cortacésped, piezas del fondo de las bielas se sumergen en el aceite salpicando la carcasa para lubricar los componentes internos. En los motores de los vehículos modernos, la bomba de aceite toma el aceite del depósito de aceite y lo envía a través del filtro de aceite a galerías, desde las cuales el aceite lubrica los rodamientos principales ayudando a los diferentes rodamientos que operan las válvulas. En los vehículos convencionales de la actualidad, aceite a presión, proveniente de las galerías de aceite en dirección a los rodamientes principales, se introduce en los orificios de los rodamientos principales del cigüeñal. Desde estos orificios hacia los rodamientos principales, el aceite se mueve a través de los pasajes dentro del cigüeñal hacia orificios de salida en la barra con los rodamientos, con el fin de lubricar los rodamientos de la barra y las bielas. Algunos diseños sencillos se basan en estas piezas que se mueven a alta velocidad para salpicar y lubricar las superficies en contacto entre los anillos de los pistones y la superficie interior de los cilindros. Sin embargo, los diseños modernos cuentan con canales a través de las barras que transportan el aceite desde las bielas hasta la conexión entre el rod y el pistón, lubricando las superficies de contacto entre los anillos del pistón y las superficies interiores de los cilindros. La película de aceite también sirve como sello entre los anillos del pistón y las paredes del cilindro para separar la cámara de combustión en la cabeza del cilindro de la carcasa.1 2
Grados
La Society of Automotive Engineers, SAE, al español, «Sociedad de Ingenieros del Automóvil», ha establecido un sistema de códigos numéricos para categorizar los aceites de motor según su viscosidad cinemática. Los grados de viscosidad del SAE son lo siguientes: 0, 5, 10, 15, 20, 25, 30, 40, 50 y 60. A algunos de los grados se les puede añadir el sufijo W de "winter" (palabra en inglés para «invierno») o viscosidad para arranque en frío a bajas temperaturas. La viscosidad se mide según el tiempo que tarda una cantidad determinada de aceite en fluir a través de un orificio a una temperatura estándar. Cuando más tarda, mayor es la viscosidad, y por consiguiente mayor es el código SAE.
Nótese que el SAE opera un sistema de categorización diferente para aceites de la transmisión que no debe confundirse con la viscosidad del aceite de motor. Números elevados del aceite de la transmisión (ej. 75W-140) no significan necesariamente que la viscosidad sea mayor que la de un aceite


Se llama aceite de motor, por extensión, a todo aceite que se utiliza para lubricar los motores de combustión interna. Su propósito principal es lubricar las partes móviles reduciendo la fricción. Además de lubricar el aceite también limpia, inhibe la corrosión y reduce la temperatura del motor transmitiendo el calor lejos de las partes móviles para disiparlo. Los primeros aceites utilizados fueron los extraídos de grasas animales y vegetales. A medida que avanzó la técnica, y las exigencias de los motores, se empezaron a usar los compuestos químicos derivados del petróleo de mayor calidad y acorde con las necesidades industriales en ese momento. Estos aceites, que consisten principalmente en hidrocarburos y compuestos orgánicos de carbono ehidrógeno, son aditivados con diferentes compuestos químicos para mejorar su cualidades. La tecnología actual, no obstante, los está dejando obsoletos y están siendo desplazados progresivamente por los aceites sintéticos formulados enteramente en laboratorio y con prestaciones muy superiores a los derivados del petróleo.